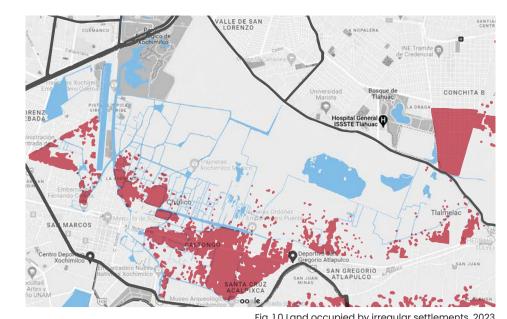
AXO-PHYT: Regeneration by Design

Systemic Problem



Located in the south of Mexico City, **Xochimilco** preserves the last remaining agricultural paradise of chinampas from the Aztecs in Tenochtitlán.

Part of UNESCO's World Heritage Sites, the chinampas are artificially made pieces of land floating within the lakes and waterways, forming a gridded system of canals with thriving vegetation.

Over the last three decades and as a result of urban expansion and lack of regulation, many informal settlements have illegally occupied the land, causing significant pollution in the waterways due to poor management of organic and inorganic waste, affecting wildlife and residents. Nowadays, they represent 48.71% of the total population of the borough and their impact is severely damaging the ecosystem.

Furthermore, several contextual facts also affect the area, such as children of the "chinamperos" (the people in charge of agriculture in the Chinampas) leaving the area to find new careers and interests. Additionally, the competition between local agriculture and large-scale companies, which has resulted in 1,000 hectares of abandoned chinampas. This cirlces back to the illegal settlements, because with the empty land, other people move illegally and occupy it.

Design Solution

The proposal to mitigate this systemic problem is a **self-sustaining bathroom with a natural** filtration system.

Local families can use it every day for their basic hygiene needs and from that use, the black and grey water can be disposed of through the filtering water system in order to be cleaned of toxins and pollutants and then reintegrated into the waterways of Xochimilco without damaging the ecosystem.

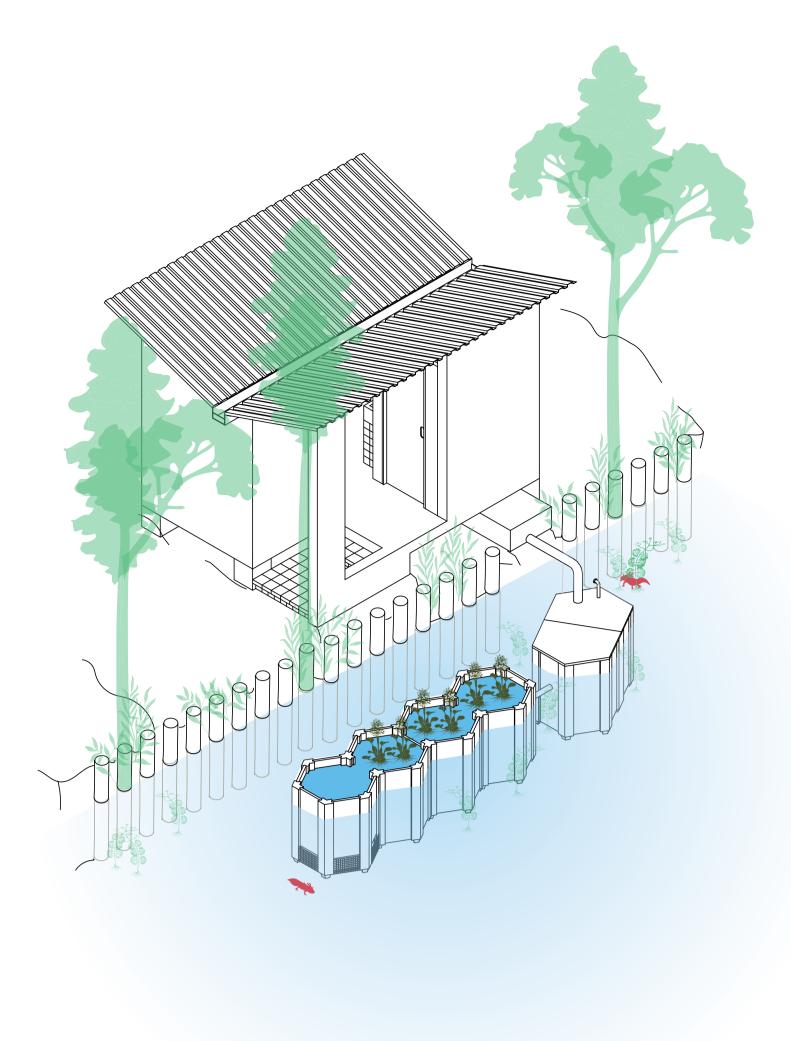
The overall design is intended to fall into the designated area with care, meaning that materials are to be sourced locally, and manufacturing has been thought through to be able to involve the community as much as possible. By involving the future users of the system from the installation process onward, they will develop a stronger sense of responsibility and care for its maintenance.

Placed in the chinampas, the system is an intervention needed in an ecological paradise in order to keep preserving the water balance and harmony.

Bathroom functionality

Integrating alternative systems

and area divisions


Washing area

and everyday water

rainwater collection

Common area used for washing

source. Water sourced from

Toilet area

Toilet that uses

water from the sink

Design Solution - How it works Gravity system for toilet with biofilter for sewage water The effluent flows to the right, as indicated by the arrows. -The filter needs to be cleaned every 6 - 12 months.

phytoremediation the exposure of dirty water to the air Baffle filter Gravel and sand filter Sludge / Solids Grate for solids collection Fanwort phytoremediation submerged plant

All solids settle as sludge which is decomposed by microorganisms. Gases are formed through anaerobic digestion of wastewater solids and exit by diffusion.

A final gravel and sand filter further cleans the water in the enclosed area before passing as it goes through the membrane.

Anaerobic tanks help separate the remaining solids and further digest the sludge material.

Submerged plants absorb O2 and CO2 from the water column. They help oxygenate the water and absorb remaining pollutants.

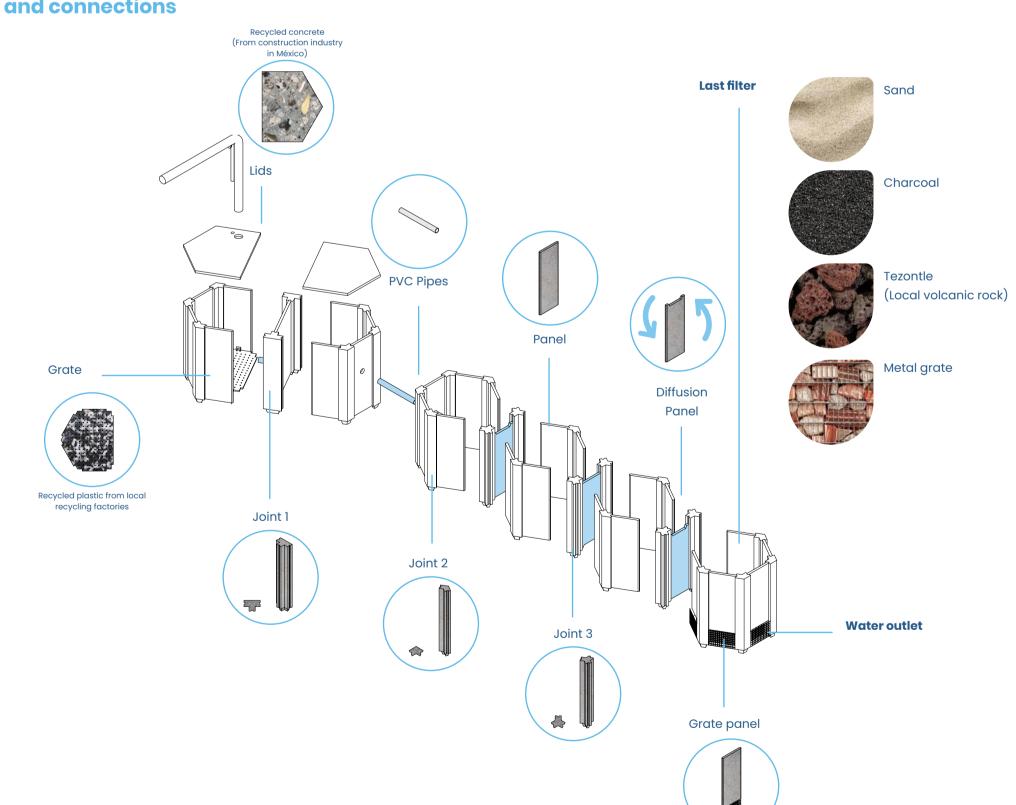
The required area is proportional to the number of residents: aprox. around 5 m²

per person.

Different

width.

configurations are


on the waterways

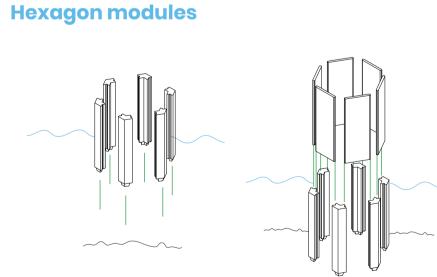
unique lenght and

available depending

Tanks with floating wetland plants get their CO2 and O2 from the atmosphere and absorb pollutants in the water through the microorganisms in the roots, which feed on pollutants and heavy metals. The biological activity breaks down waste and absorbs excess nutrients.

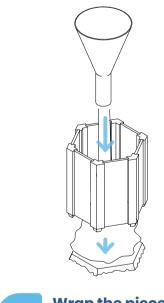
Installation - System Parts Pipes and connections

Bath area

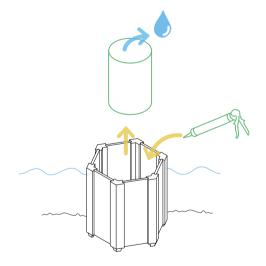

from rainwater

collection

(From the construction


Bath area with water

Installation - How it's built



waterway's riverbed.

Wrap the pieces together and insert the hopper to make a concrete pour and seal the bottom with a concrete layer.

Once the concrete has set, use a sealing agent to seal any remaining

(Water can be drained out using a pump or any homemade method like introducing a plastic container to get the water out and be able to seal it.)

gaps and ensure it is

watertight.

Context - How it's used Living in synergy

The diagram shows a bathroom module for a small (1 - 4 person)family to be used in the system.

The proposed measurements of the configuration of this particular system use 1.05 m ø circumscribed hexagons, and a total of 6 tanks (with different filtering purposes). This means that 0.5 m³ of water is filtered per day and released back to the waterways through diffusion.

Rainwater collection from the roof 4.20 m 3.45 m 2.80 m .80 m - 1.10 m *Dependant 5.30m on the .60 m - 1 m depth of the water

New Possibilities

Household

Basic household bathrooms for different numbers of users can have different configurations in the system's hexagonal tanks depending on the number of people in the household.

Community

Larger and better-equipped bathrooms could be developed as bathhouses for several families or closer communities. Bathhouses and shared bathing spaces can serve as places for the community to gather and relax.

With the tourist industry being so large and active in the area, bathrooms for tourists could also be thought of with the addition of this system. Currently bathrooms are in poor condition and suffer from sewage issues. This could be a better way to welcome tourists while promoting sustainable toilet use.

